# アーク溶接コスト

## I. アーク溶接のコストについて

## 1. アーク溶接のコスト計算

アーク溶接の**コスト計算をする場合**、或いは **CO2** と**混合ガスとのコスト比較**をするときに使う。この資料は **CO2** と混合ガスのコスト比較をしてみました。金額等は参考価格ですので皆様の実際の価格を使用してください。

## 2. CO2 溶接に対し、混合ガス溶接の特徴

| CO2に対し混合ガスの特徴   | 内 容                         |
|-----------------|-----------------------------|
| I) スピードアップが出来る。 | ①アークタイムの短縮。→ 生産性の向上(20%以上)。 |
|                 | ②ガス使用量が削減。                  |
|                 | ③歪の軽減。                      |
| Ⅱ)稼働率の向上効果。     | ①最適溶接条件が設定しやすい。             |
|                 | ②スパッタ除去に費やす時間の削減。           |
|                 | a) スパッタ付着防止剤を塗る時間の削減。       |
|                 | b) ノズルに付着したスパッタの除去時間の削減。    |
|                 | c) 製品・冶具に付着したスパッタの除去時間の削減。  |
|                 | ③スラグ処理時間の短縮(スラグ付着量が大幅に減少)。  |
|                 | <u>スラグ</u> とは:              |
|                 | ・ワイヤ、母材中の Fe・Si・Mn の酸化物。    |
|                 | ・こげ茶色でガラス状の剥離性付着物。          |
|                 |                             |
|                 |                             |
|                 |                             |
|                 | ④補修(手直し)時間の短縮。              |
|                 | a) 溶け落ちが少なく、補修作業の削減。        |
|                 | b) アンダーカットの整形作業が削減。         |
|                 | c) 余盛の整形作業が削減。              |
|                 | ⑤歪取り時間の削減。                  |
| Ⅲ) ワイヤ節減効果      | ①突合せ溶接                      |
|                 | 余盛が低く、スパッタが少ない。             |
|                 | CO2に比べ 10%以上、ワイヤの削減が出来る。    |
|                 | 余盛                          |
|                 |                             |
|                 |                             |
|                 |                             |
|                 | CO2 混合ガス                    |
|                 |                             |

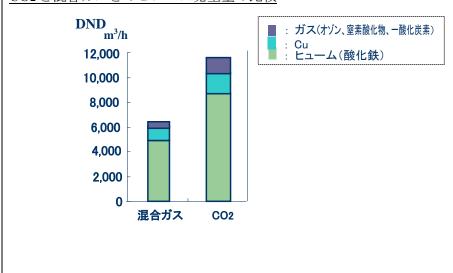
|                          | ②隅肉溶接                                                   | 1. 10 0 18.1. 3.    |                 |  |  |  |  |  |  |
|--------------------------|---------------------------------------------------------|---------------------|-----------------|--|--|--|--|--|--|
|                          | <ul><li>・等脚長で余盛が低く、</li><li>・CO2 に比べて 20~30%</li></ul>  |                     | =               |  |  |  |  |  |  |
|                          |                                                         | 0住及のソイド 前級 /        | 7山木〇。           |  |  |  |  |  |  |
|                          | CO2 : L1 <l2(不等< th=""><th>⊞ ≧.)</th><th></th></l2(不等<> | ⊞ ≧.)               |                 |  |  |  |  |  |  |
|                          |                                                         |                     | 混合ガス            |  |  |  |  |  |  |
|                          | )                                                       | LI LI               | CO <sub>2</sub> |  |  |  |  |  |  |
|                          | 混合ガス: L1=L2(等脚                                          |                     |                 |  |  |  |  |  |  |
|                          |                                                         |                     |                 |  |  |  |  |  |  |
|                          |                                                         |                     |                 |  |  |  |  |  |  |
|                          |                                                         | 4                   | L2              |  |  |  |  |  |  |
|                          | <u> </u>                                                |                     |                 |  |  |  |  |  |  |
|                          | ③ CO <sub>2</sub> は、アークが不安定                             | こなため溶接速度を           | 上げると、ビードが途      |  |  |  |  |  |  |
|                          | 切れて(ハンピング) しまう                                          | 。そのため、速度を           | 抑えなければならず、      |  |  |  |  |  |  |
|                          | 単位溶接長当りの溶着金属                                            | <b>電量が多くなってし</b>    | まう。混合ガスを使用      |  |  |  |  |  |  |
|                          | することで、スピードアッ                                            | プが計れ、10~20          | %のワイヤ量の削減が      |  |  |  |  |  |  |
|                          | 出来る。                                                    |                     |                 |  |  |  |  |  |  |
|                          | ④ スパッターロスが多くなる                                          |                     |                 |  |  |  |  |  |  |
|                          | CO <sub>2</sub> と混合ガスの溶着効率                              |                     | のようになる。         |  |  |  |  |  |  |
|                          |                                                         | CO <sub>2</sub> (%) | 混合ガス (%)        |  |  |  |  |  |  |
|                          | 大電流領域                                                   | 90~92               | 97~99           |  |  |  |  |  |  |
|                          |                                                         |                     |                 |  |  |  |  |  |  |
|                          | 短絡アーク領域                                                 | 92~93               | 95~96           |  |  |  |  |  |  |
|                          | パルス領域                                                   | 使用不可                | 99              |  |  |  |  |  |  |
| <br>IV)ガス価格              | <br>  ・表面ガス価格(ガス価格の                                     | <br>みの比較):          |                 |  |  |  |  |  |  |
| 1V) / V NIMTH            |                                                         | $\mathrm{CO}_2$     | 混合ガス            |  |  |  |  |  |  |
|                          | 例えば、171.3                                               | 円/kg(300 円/m³)      | 700 円/m³        |  |  |  |  |  |  |
|                          | <br> ・TOTAL コストによる価格:                                   | ${ m CO}_2$         | 混合ガス            |  |  |  |  |  |  |
|                          | 例えば、                                                    |                     | 276 円/m         |  |  |  |  |  |  |
| V) CO <sub>2</sub> での問題点 | 1) スパッター                                                |                     |                 |  |  |  |  |  |  |
|                          | 2) ビード外観(余盛が高い。止ぬ                                       | 端部が不揃い。止端部の         | )濡れ性が悪い。)       |  |  |  |  |  |  |
|                          | 3) 溶接スピードに限度。                                           |                     |                 |  |  |  |  |  |  |
|                          | 4) 欠陥が出やすい。                                             |                     |                 |  |  |  |  |  |  |
|                          | ・ブローホール・ピ<br>・アンダーカット・                                  |                     |                 |  |  |  |  |  |  |
|                          | - ・                                                     |                     |                 |  |  |  |  |  |  |
|                          | <ul><li>ビード底辺の溶け</li></ul>                              |                     |                 |  |  |  |  |  |  |
|                          | ▲ピンホール                                                  | ر<br>ر              | ·ダーカット <b>フ</b> |  |  |  |  |  |  |
|                          |                                                         | •                   | -               |  |  |  |  |  |  |
|                          |                                                         |                     |                 |  |  |  |  |  |  |
|                          | ブローホール                                                  | l.                  |                 |  |  |  |  |  |  |
|                          |                                                         |                     | ・バーラップフ         |  |  |  |  |  |  |
|                          | V-1.1 ++ L                                              | 1                   | _ 4             |  |  |  |  |  |  |
|                          | 溶け落ち                                                    | •                   |                 |  |  |  |  |  |  |
|                          | 溶け落ち                                                    |                     |                 |  |  |  |  |  |  |
|                          | 溶け落ち                                                    |                     |                 |  |  |  |  |  |  |

### VI) CO2はヒュームの発 生量が多い為、作業環 境が悪い。



#### ヒュームの主成分

・酸化鉄: 溶接中に酸化された鉄分が気化し発生する。空気中に含まれる  $O_2$  の混入量とシールドガス中の  $CO_2$  又は  $O_2$  量が


増加すると増加する。

・銅成分: 通電性、耐腐食性の向上のためワイヤの表面に銅メッキ が施されている。これがアーク熱により気化しヒュームの

成分となる。

・ガス成分 $(O_3 \cdot NO_x \cdot CO)$ : 溶接時のアーク光により  $O_2 \cdot N_2$  が 化学反応を起こし  $O_3,NO_x$  を、又、シールドガス中の  $CO_2$  が解離して CO を発生する。

#### CO<sub>2</sub>と混合ガスとのヒューム発生量の比較



### 2. コストの構成

MAG 溶接における溶接コストの構成は次の3項目に大別することが出来る。

| 項目          |                                     | 内 容                                                                                                          |
|-------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 労務費(人件費)    | 前工程                                 | ・ワークのセット作業。<br>・溶接条件・トーチ狙いの設定作業。<br>・スパッター除去剤の塗布作業。<br>・仮付け作業<br>・スパッターの除去、余盛整形作業(仮付け)。                      |
|             | 本溶接                                 |                                                                                                              |
|             | 後工程                                 | <ul><li>・スパッター除去作業。</li><li>・ビード補修作業<br/>(ブローホール、ピンホール、アンダーカット、オーバー<br/>ラップ、溶け落ち)。</li><li>・歪取り作業。</li></ul> |
| 溶接材料費(消耗品費) | 前工程                                 | <ul><li>・スパッター除去剤。</li><li>・仮付け時のワイヤ・ガス。</li><li>・砥石(仮付け後のスパッター除去、余盛整形)</li></ul>                            |
|             | 本溶接                                 | ・ワイヤ・ガス。                                                                                                     |
|             | 後工程                                 | ・砥石 (スパッター除去、ビードの補修)。<br>・ワイヤ・ガス (ビード補修)。                                                                    |
| 設備等の使用費     | ・設備の減価<br>・保守費(修理<br>・消耗部品費<br>・電気代 |                                                                                                              |

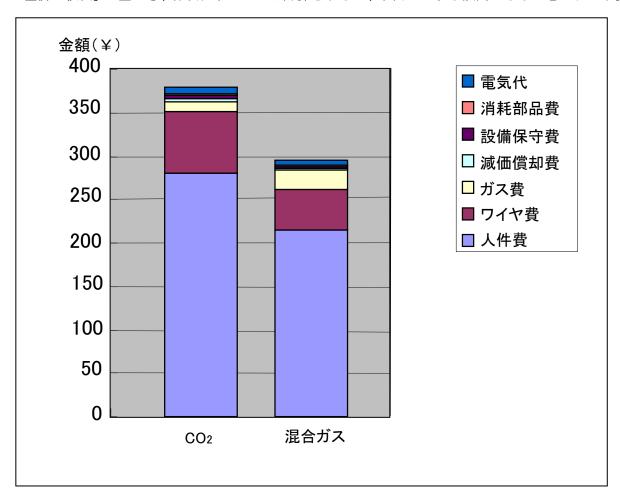
## 3. 溶接条件

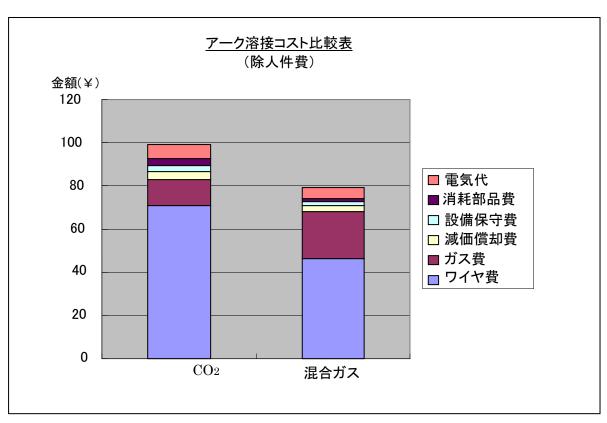
コスト比較をする為、下表条件表の溶接形状等及び数値等を参考として使用し計算しました。

|            |          |        |                  | 容 接:     | 条 件                     |                    |                |
|------------|----------|--------|------------------|----------|-------------------------|--------------------|----------------|
| 母材材質       | 母材材質 軟鋼  |        |                  |          |                         |                    |                |
| 溶接継ぎ手      | 水平隅肉     | 水平隅肉   |                  |          | $\cap$                  |                    |                |
| 溶接長        | m        | 1 (100 | O cm)            |          |                         | 1                  | S <sub>2</sub> |
| 脚長         |          | COs    | 2                | 混合       | ガス                      | a<br>(6mm)         | Sı             |
|            | mm       | a <    | b                | a =      | - b                     |                    |                |
|            |          | 6      | 8                | 6        | 6                       |                    |                |
|            |          |        |                  |          |                         | ]                  | (6mm)          |
|            |          |        | CO <sub>2</sub>  |          |                         | 混合ガス               | 備考             |
| 溶接電流       | A        |        | 280              |          |                         | 300                |                |
| 溶接電圧       | V        |        | 31               |          |                         | 29                 |                |
| 溶接速度       | cm/分     |        | 50               |          |                         | 65                 |                |
| アークタイム     | 分        |        | 2.0              |          |                         | 1.54               | 溶接長/溶接速度       |
| ワイヤ送給量     | g/分      |        | 100.5            |          |                         | 105                |                |
| ワイヤ径       | $(\phi)$ |        | 1.2              |          |                         | 1.2                |                |
| ガス流量       | ℓ/分      |        | 20               |          |                         | 20                 |                |
| ビード余盛率     | %        |        | 15               |          |                         | 8                  |                |
| 溶着効率       | %        |        | 92               |          |                         | 99                 |                |
| アーク発生率     | %        |        | 40               |          |                         | 40                 |                |
| スパッター除去時 間 | 分        | アークク   | タイム<br>0.6       | Ø 30%    | アー                      | ・クタイムの 5%<br>0.077 |                |
| le)        |          |        |                  | その他の     | <br>〉条件                 | 0.011              |                |
| 人件費        |          | 円/H    | 3,000            | 0. (50 円 | ]/分)                    |                    |                |
| ワイヤ単価      |          | 円/kg   | 300. (0.3 円/g)   |          |                         |                    |                |
| ガス単価       |          | 円/m³   | CO <sub>2</sub>  |          | 300 (0.3 円化) =171.30/kg |                    |                |
|            |          |        | 混合ガス 700(0.7円/ℓ) |          |                         |                    |                |
| チップ単価      |          | 円/個    |                  |          |                         |                    |                |
| 電力料金単価     |          | 円/kwh  |                  |          |                         |                    |                |
| 年間作業時間     |          | 時間     | -                | 0. (8H/∃ | $\times 225$            | 日/年)               |                |
| 設備(溶接機等)費  |          | 円      | 610,             | 000.     |                         |                    |                |
| 減価償却期間     |          | 年      | 7                |          |                         |                    |                |

<sup>\*</sup> ビード余盛率(%)={S<sub>2</sub>/(S<sub>1</sub>+S<sub>2</sub>)}×100

### 4. 経済的比較表


溶接長 1m を脚長 6 mmで隅肉継ぎ手で溶接するとした場合の例です。

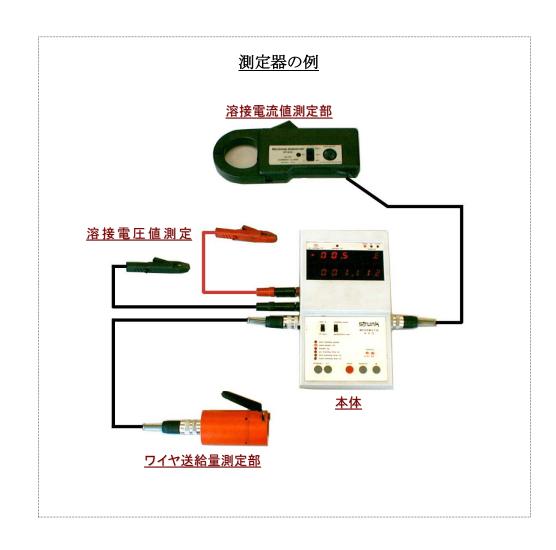

|                             | 溶接                      | 方式   | CO <sub>2</sub>       | 混合ガス        | 備考                                                              |
|-----------------------------|-------------------------|------|-----------------------|-------------|-----------------------------------------------------------------|
|                             | ・ワイヤ消費量                 | g/m  | 236                   | 154.6       | <ul><li>ワイヤは実体ワイヤ(ソリッド)を使用。</li></ul>                           |
| ワイ                          | ・ワイヤ単価                  | ¥/kg | 300                   | 300         | 一 ット)を使用。                                                       |
| サ費                          | a) ワイヤ費用                | ¥/m  | 70.8                  | 46.4        |                                                                 |
|                             |                         |      | 2.00                  | 1 74        | が44 E ケ 19444   主由                                              |
|                             | ・アークタイム                 | 分/m  | 2.00<br>300(171.3/kg) | 1.54<br>700 | 溶接長さ/溶接速度 ・ CO2 の場合、円/kgの取引。                                    |
| ガス費                         | ・ガス単価                   | ¥/m³ | $(0.3/\ell)$          | (0.7/ℓ)     | <ul> <li>円/kgを円/㎡に換算するに</li> <li>は、円/kg価格を 0.571 で割れ</li> </ul> |
| 費                           | b) ガス費用                 | ¥/m  | 12.0                  | 21.56       | ば、円/㎡価格になる。<br>(1 kg=0.571 m)                                   |
|                             |                         |      | <b>~</b> 0            | 2.25        |                                                                 |
|                             | • 作業時間                  | 分    | 5.0                   | 3.85        |                                                                 |
| 人                           | ・スパッター除去時間              |      | 0.6                   | 0.077       |                                                                 |
| 人<br>件<br>費                 | ・工賃単価                   | ¥/H  | 3,000                 | 3,000       |                                                                 |
| <b> </b> ^                  | c) 人件費用                 | ¥/m  | 280.0                 | 196.4       |                                                                 |
|                             |                         |      |                       |             |                                                                 |
|                             | ・投資金額                   | ¥    | 610,000               | 610,000     |                                                                 |
| 設備                          | d) [減価償却費]              | ¥/m  | 4.0                   | 3.1         | 7年償却                                                            |
| (溶接)                        | e)[電力費]                 | ¥/m  | 6.52                  | 5.04        | 電力料金 18 円/KWh                                                   |
| <b>設備</b> (溶接機等) <b>使用費</b> | f) [保守費]                | ¥/m  | 2.83                  | 2.17        | 投資金額の 10%。                                                      |
| 用   費                       | g)消耗部品費                 | ¥/m  | 2.83                  | 2.17        | 投資金額の 10%。                                                      |
|                             | 合 計 (¥/m) (a+b+c+d+e+f) |      | <b>≒379</b>           | <b>≒276</b> | * CO2に対し混合ガスは27%<br>コストダウンが出来る。                                 |

- \* この費用には前処理・後処理工程費用は含まれていません。但し、スパッター除去費用は含まれています。前処理・後処理工程費用を含めれば混合ガスの場合、27%+  $\alpha$ %のコストダウンが出来ます。
  - 前処理工程:仮付け作業時のやり直し或いは仮付けビードの補修など。
  - 後処理工程:本溶接で発生した不良品の手直し或いは破棄品の費用。

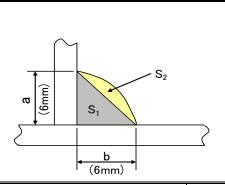
### 5. アーク溶接コスト比較表

「4.経済比較表」に基づき、各項目事にコスト計算をすると、下表のような傾向になると思われます。






## Ⅱ. コスト計算内訳


## Ⅰ. ワイヤ費

## 1. ワイヤ消費量を把握する方法

- 1) 計算で算出する方法。=正確性に欠ける。
- 2) 消費したワイヤ長さを測定し、それから計算で求める方法。
- 3) 消費したワイヤの重さを測定する方法。
- 4) 測定器(コンピューター)で測定する方法。
  - \* 1)の方法は概略の数値しか出せない。2)・3)・4)の方法は、実際に消費したワイヤの量が出るので確実性がある。出来れば4)の方法が簡単で早く実測が出来るが、測定器が必要。



## 2. ワイヤの消費量の計算方法とワイヤ費



溶接部断面積の計算方法

 $\cdot S = S_1 + S_2$ 

S : 溶接ビード断面積 (cm) S1 : ビード断面=(a×b)/2 (cm)

S2 : 余盛面積率 (%)=S2/(S1+S2)×100 (%)

|    | 計算項目                                                        | 記号 | 計 算 式                                              |                                                                                             |                   |      |  |
|----|-------------------------------------------------------------|----|----------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|------|--|
| a) | 理論必要溶着ワイヤ量<br>* ビードの余盛率を、CO2<br>を 15%・MAG を 8%と仮<br>定したとする。 | Aw | Aw = S1×L×α×ρ={(a×b)/2}×L×α×ρ                      |                                                                                             |                   |      |  |
| b) | 溶着効率                                                        | η  | CO <sub>2</sub>                                    | 度(Fe=7.87g/cm)<br>短絡<br>94%<br>96%                                                          | 大電流<br>92%<br>99% | %    |  |
| a) | 必要溶着ワイヤ量                                                    | Bw |                                                    |                                                                                             |                   |      |  |
|    |                                                             |    | Bw= $\pi$ r <sup>2</sup> $\pi$ r <sup>2</sup>      | でした長さが判れば、<br>/4 × L × ρ<br>/4:ワイヤの断面和<br>定した場合、消費した                                        |                   | g/m  |  |
| d) |                                                             | Wc | 購入価格=300(                                          |                                                                                             |                   | ¥/kg |  |
|    | ワイヤ費                                                        | Cw | Cw = Bw × W<br>• CO2: 236<br>• MAG:154.<br>Bw : 必要 | 7c / 1,000<br>.0×300/1,000 = 70<br>.5×300/1,000 = 46<br>要溶着金属量(ワイヤ量<br>CO2:236(g/m) / MAG:1 |                   | ¥/m  |  |

## Ⅱ.シールドガス費

| 計算項目                | 記号  | 計算式                                                                                                                                            | 単位   |
|---------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| a) シールドガス設定流量       | Gf  | 流量計の読み=20(ℓ/分)                                                                                                                                 | ℓ/分  |
| b) 時 間              |     |                                                                                                                                                |      |
| 1) プリフロー時間          | Pt  | 溶接機で任意に設定=(0.5Sec)                                                                                                                             | 秒    |
| 2) 本溶接時間 (アークタイム)   | At  | アークが出ている間の時間<br>CO2:2.00(分)/MAG:1.54(分)                                                                                                        | 分    |
| 3) アフターフロー時間        | Aft | 溶接機で任意に設定=(1Sec)                                                                                                                               | 秒    |
| TOTAL 時間 [1)+2)+3)] | Wt  | Wt=(Pt)+At+(Aft)<br>CO2:2.00(分)/MAG:1.54(分)<br>*プリフロー(Pt)・アフターフロー(Aft)は無視。                                                                     | 分    |
| c) シールドガス価格         | Gc  | 購入価格(CO2:171¥/kg / MAG:700¥/㎡) CO2:300(¥/㎡)=300/1,000=0.3(¥/ℓ) MAG:700(¥/㎡)=700/1,000=0.7(¥/ℓ)                                                 | ¥/m³ |
| d) シールドガス費          | Cg  | Cg=Gf×Wt×Gc  •CO2:20×2.00×0.3 = 12.0(\(\frac{2}{2}\)/m)  •MAG:20×1.54×0.7 = 21.56(\(\frac{2}{2}\)/m)  Gf:シールドガスの設定流量=20(\(\ell)\)/分) Wt:アークタイム | ¥/m  |

#### 1) シールドガスの価格について

 $CO_2$  価格はY/kg で取引されている。 流量計の設定が $\ell/分$ であるので、Y/kg を $Y/m^3(Y/\ell)$ に変換しなければならない。よって、 $CO_2$  は  $1kg=0.571m^3$  であるので、 $CO_2$  購入価格に 0.571 で割った数値が  $1m^3$  の価格となる。

#### CO2 価格(¥/kg) / 0.571= (¥ / m³)

又、¥/ $m^3$ であるので、¥/ $\ell$ にしなければならない。¥/ $\ell$ にするには、 $1m^3=1,000$   $\ell$  であるので、¥/ $m^3$ 価格を 1,000 で割ればよい。

#### 2) シールドガス使用量の計算式

使用量={プリフロー時間+溶接時間(アークタイム)+アフターフロー時間}×ガス流量(ℓ/分)

#### 3) アークタイムとは、

- ・ 実際にアークが発生している時間のこと。
- ・ 溶着ワイヤ量を溶接ワイヤの溶着速度で割ることに求められる。 アークタイム(分/m)=必要ワイヤ量 / 溶着速度=100 cm/溶接速度
- ・ 一パス仕上げの水平隅肉溶接では、溶接長を溶接速度で割ることにより求めることが出来る。 100 cm/溶接速度(cm/分)

## Ⅲ. 人 件 費

| 計算項目                                  | 記号                     | 計算式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 単位     |
|---------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| a) アーク発生率                             | Af                     | Af= (At / Tw)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %      |
|                                       |                        | ·CO2 : (2.00/5.00)=0.4(40 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
|                                       |                        | •MAG : (1.54/3.85)=0.4(40 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
|                                       |                        | At: アークタイム(アーク発生時間)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                                       |                        | (CO2: 2.00 分/MAG:1.54 分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                                       |                        | Tw:溶接作業時間                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                        | (CO <sub>2</sub> : 5.0 分/MAG: 3.85 分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| b)溶接作業時間                              | Tw                     | $Tw=100\times(At/Af)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 分/m    |
|                                       |                        | •CO2 : $100 \times (2.00/0.4) = 5.0(\%)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                                       |                        | •MAG : 100×(1.54/0.4)=3.85(分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
|                                       |                        | At:アークタイム(アーク発生時間)<br>(CO2:2.00 (分/m)/MAG:1.54(分/m))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                       |                        | (CO2: 2.00 (万/m)/ MAG: 1.54(万/m)/<br>Af: アーク発生率=40 %(0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| c) 溶接前後のスパッター除去時間                     | T2                     | T2=At×(CO <sub>2</sub> : 30%/MAG: 5%)/100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 分      |
| (アークタイムの 30%(CO2)/MAG(5%)             |                        | ·CO2 : 2.00×(30/100)=0.60 (分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| と仮定する)                                |                        | •MAG : 1.54×(5/100)=0.077(分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| と 放足 する)                              |                        | At:アークタイム<br>(CO2:2.00 分/m / MAG:1.54 分/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 1) 「伊弗兴/正                             | D                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37 /11 |
| d)人件費単価                               | Pr                     | 3,000(¥/H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ¥/H    |
| e)人件費                                 | $\mathbf{C}\mathbf{p}$ | $Cp = (Tw + T2) \times (Pr / 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ¥/m    |
|                                       |                        | $\cdot$ CO <sub>2</sub> : (5.0+0.60)×(3,000/60) = $\frac{280.0 \ (\text{\frac{\text{\text{\frac{\text{\text{\text{\text{\text{\text{CO}}}}}}{2}}}{2}}{2} + \frac{1}{2} + \frac{1}$ |        |
|                                       |                        | -MAG: $(3.85+0.077)\times(3,000/60) = 196.4(\frac{1}{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                       |                        | Tw:溶接作業時間                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                       |                        | (CO2:5.0分/MAG:3.85分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                       |                        | T2:溶接前後のスパッター除去時間 (GO: 0.057 / ) (MAC 0.057 / )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                       |                        | (CO2:0.60分/MAG:0.077分)<br>(Pa / GO):1 公当りの人供書資価-50(V/公)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                       |                        | (Pr / 60) : 1 分当りの人件費単価=50(¥/分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |

- 1) 人件費=作業時間(H)×時給(Y/H)=作業時間(H)×工賃単価(Y/H)×(1/60)
- 2) 作業時間とは、
  - ・ 溶接作業者の全作業時間のことで、**アークタイムに準備時間・手待ち時間・前処理時間・後処** 理時間・移動時間などの合計です。
  - ・ 全作業時間に占めるアークタイムの割合をアーク発生率と呼んでおり、一般的に  $30\sim50\%$ 程度で計算される。

## IV. 電 力 費

| 計算項目      | 記号 | 計算式                                                                | 単位    |
|-----------|----|--------------------------------------------------------------------|-------|
| a) 溶接機効率  | 3  | (溶接機仕様)80%=0.8                                                     | %     |
| b) 使用電力   | P  | $P=(I_W\times E_W)/(1,000\times \varepsilon)$                      | kw    |
|           |    | • CO <sub>2</sub> =(280×31)/(1,000×0.8)= <u>10.85 (kw)</u>         |       |
|           |    | • MAG=(300×29)/(1,000×0.8)= <u>10.88(kw)</u>                       |       |
|           |    | Iw :溶接電流 CO2=280 (A)/MAG=300(A)<br>Ew : 溶接電圧 CO2= 31(V) /MAG=29(V) |       |
|           |    | 1,000: CO2=(280×31=8,680w)/                                        |       |
|           |    | MAG=(300×29=8,700w)であるので、kw にす                                     |       |
|           |    | る為 1,000 で割っている。<br>ε : 溶接機効率(%)=80%(0.8)                          |       |
| c) 使用電力量  | Pt | Pt=P×(At / 60)                                                     | kwh   |
|           |    | • CO <sub>2</sub> =10.85×(2.00/60)= <b>0.362(kw-h)</b>             |       |
|           |    | • MAG = $10.88 \times (1.54/60) = 0.280 \text{(kw-h)}$             |       |
|           |    | P : 使用電力                                                           |       |
|           |    | CO2=10.85 (kw)/MAG=10.88(kw)                                       |       |
|           |    | At:アークタイム(アーク発生時間)<br>CO2=2.00 (分) / MAG=1.54(分)                   |       |
| d) 電力料金単価 | Pc | 電力会社による=18 (¥/kw-h)                                                | ¥/kwh |
| e) 電力料金   | Cs | $Cs=Pt \times Pc$                                                  | ¥/m   |
|           |    | • CO <sub>2</sub> =0.362×18 = $\frac{6.52 (Y/m)}{}$                |       |
|           |    | • MAG= $0.28 \times 18 = 5.04(\frac{\text{y}}{\text{m}})$          |       |
|           |    |                                                                    |       |
|           |    | Pt:使用電力量                                                           |       |
|           |    | CO2=0.362 (kw-h) / MAG=0.28(kw-h)<br>Pc:電力料金単価=18 (¥/kwh)          |       |

1) 電力消費量(溶接電流×アーク電圧×アークタイム)に、電力料金単価を掛けることにより求めることが出来ます。

<u>例えば、電気代を 18¥/kw-h とした場合、</u>

 ${(電流 A \times 電圧 V \times 作業時間) / (60 \times 1,000)} \times 単価$ = ${(A \times V \times 作業時間)/(60 \times 1,000)} \times @18$ 

2) 作業時間=アークタイム / アーク発生率(%)

## V. 溶接機等使用費

| 計算項目       | 記号 | 計算式                                                                                                                                                                                                                                                                                                                                                | 単位  |
|------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|            | [3 | <br>  容接機及び設備等の償却費]                                                                                                                                                                                                                                                                                                                                |     |
| a) 設備等投資価格 | Wc | (購入価格)=610,000 (¥)                                                                                                                                                                                                                                                                                                                                 | ¥   |
| b) 償却年数    | Dy | (税務署に確認) = 7 (年)                                                                                                                                                                                                                                                                                                                                   | 年   |
| c) 年間作業時間  | Ну | 8H/日×225 日/年=1,800H                                                                                                                                                                                                                                                                                                                                | Н   |
| d) 償却費計    | Cd | Cd=Wc / (Dy×Hy)×(Tw/60)  •CO2={610,000/(7×1,800)}×(5.00/60) = 4.0 (\forall /m)  •MAG={610,000/(7×1,800)}×(3.85/60) = 3.1 (\forall /m)  Wc: 設備等投資価格=610,000(円)  Tw: 溶接作業時間                                                                                                                                                                          | ¥/m |
|            |    | <u> </u>                                                                                                                                                                                                                                                                                                                                           |     |
| a) 保守費比率   | Mf | (Wc ∅ 10%)                                                                                                                                                                                                                                                                                                                                         | %   |
| (修理代等)     | Cm | Cm={(Wc×Mf) / Hy}×{At/(Af×60)}  •CO2={(610,000×0.1)/1,800}×{2.00/(0.4×60)}  = 2.83 (¥/m)  •MAG={(610,000×0.1)/1,800}×{1.54/(0.4×60)}  = 2.17(¥/m)  Wc: 設備投資価格=610,000(¥)  Mf: 保守費比率(Wcの10%)=10%(0.1)  At: アークタイム(アーク発生時間)  CO2=2.00(分)/MAG=1.54(分)  Af: アーク発生率=40%(0.4)  CO2(2.00/0.4)= 溶接作業時間(分)  MAG(1.54/0.4)= 溶接作業時間(分)  Hy: 年間作業時間=1,800(H/年) | ¥/m |
|            |    | <u> </u>                                                                                                                                                                                                                                                                                                                                           |     |
| a)消耗部品費    | Cc | (Cc=Cm と設定)<br>・Cm : 保守費と同じ                                                                                                                                                                                                                                                                                                                        | ¥/m |
|            |    | $CO_2 = 2.83(Ym) / MAG = 2.17(Ym)$                                                                                                                                                                                                                                                                                                                 |     |

### 1) 償却費:

{溶接機等の設備価格×0.1×作業時間} /  $\{7(年) \times 225(日) \times 8(H) \times 60(分)\}$ 

### 2) 保守費=消耗部品費:

{溶接機等の設備価格×0.1×作業時間} / {225(日)×8(H)×60(分)}